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I. GENERAL CHARACTERISTICS OF DISSERTATION 

 Relevance of the problem:  
Measurements of force loads applied to metal parts, structures and equipment through 

intelligent sensor networks is an urgent task for modern industry. Some areas may be mentioned, 
such as: 

v Mechanical Engineering and Metallurgy in the manufacture and testing of metal 
components and functional structures; 

v Construction and construction-repair activities; 
v Shipbuilding and Automotive; 
v Railway transport; 
v Control of aircraft; 
v Agricultural activities and Agriculture; 
v Development of products, components and complex systems for testing biomedical 

equipment intended for various sectors of medicine; 
v Communications during laying, construction and maintenance of communication cable 

routes, monitoring of mechanical loads at base and mobile stations, etc. 
Given the undesirable overlap of various interferences and noises in the communication 

channels, an important task related to the quality of recorded measurement information is to ensure 
the data transfer from the input nodes with functional transducers of the used sensor networks and 
systems. This is necessary in connection with the adequate functioning and adaptability of the 
subsequent system modules for visualization and correct analysis of the processed information 
arrays of procedures for parametric remote monitoring. For this purpose, it is necessary to use 
appropriate statistical tools and apparatus for noise reduction, diagnostics of the type and degree of 
impact, as well as forecast analysis of its quantitative measurability in relation to the analyzed 
measurement information. 

Another important point is related to determining the volume of traffic from sensor data and 
specific parametric information, which can be served by the information and communication 
modules in their design and optimization of their system resources. In this regard, approaches for 
qualitative and quantitative analysis can be modified and created by adapting methods and 
algorithms from applied statistics and artificial intelligence. Here arises the need to search for and 
determine appropriate types of artificial neural networks, training algorithms and parameters, 
criteria for their evaluation and verification procedures, confirming the reliability of the choice of a 
particular device. 

Methods of the research:  

In order to achieve the goal and the tasks set in the research, the technology of artificial 
intelligence and classical regression analysis is applied in extracting knowledge from data when 
processing measuring sensory information in connection with applied load forces, unwanted noise 
and passing traffic in communication channels.  

Newnesses:  

A methodology for identification of working measuring transducers, types of interfering 
influences and quantification of forces of influences on tested metal samples and estimated serviced 
traffic from measuring and service data based on artificial intelligence and different training 
algorithms is proposed. 

 Aim and tasks of the dissertation: 
 The aim of the dissertation is to develop a software monitoring system for measuring and 

researching applied forces on metal parts, objects and structures to ensure the transmission medium 
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and processing of incoming traffic of registered measurement data sensory data integrating the 
concept of qualitative and quantitative of information through artificial intelligence. 

In connection with the defined goal of the dissertation, the following tasks are set for 
implementation: 

1. To train and synthesize artificial neural networks of simulated noise effects 
superimposed on the transmission of signals in communication channels for 
communication in a simulation environment at Levenberg-Marquardt training when 
experimenting with activation functions. 

2. To select models for identification of added impacts in digital signal transmission in 
electronics, automation and communications based on artificial neural networks when 
operating with Levenberg-Marquardt training algorithm by experimenting with 
activation functions. 

3. To conduct training procedures on artificial neural networks with the right propagation 
of signals and back propagation of the error in Scaled Conjugate Gradient training 
algorithm for recognizing the type of interference in communication channels. 

4. To design and test the performance of a system for measuring forces applied to tested 
metal parts, including signal processing and statistical analysis units based on the 
concept of a "virtual laboratory". 

5. To create neural models for recognition of working measuring means for registration of 
forces on metal objects on the basis of SCG and LM training algorithms in selection of 
the input variables applied to the models. 

6. To synthesize and verify models for predictive analysis of applied force effects on metal 
parts, created on the basis of artificial intelligence in Levenberg-Marquardt training 
algorithm. 

7. To derive linear regression models for predictive analysis of applied forces on metal 
objects with different number of included working measuring transducers. 

8. To derive mathematical models of different degrees on the basis of regression analysis to 
predict the amount of processed requests with packet information and the time for their 
service in simulated telecommunications systems. 

9. To implement procedures for creation, evaluation and verification and generalized 
regression neural networks and FCNN architectures for forecast analysis of the potential 
number of client requests with packet data when experimenting with the used 
controllable factors. 

10. To synthesize FFNN neural models for predictive analysis of potential processed traffic 
from client requests with packet data at different combinations of controllable factors 
and training algorithms - Levenberg-Marquardt, Bayesian Regularization and Scaled 
Conjugate Gradient. 

Area and object of the study about dissertation: 
The dissertation considers these tasks as a single set of consecutive studies aimed at 

creating, synthesizing and deriving models for identification and predictive analysis in the operation 
of simulation and actual experimental data. The following subject area of research is considered: 
"industrial directions for testing of metal objects with integration of information and 
communication technologies".  

Accordingly, the area defined in this way is focused on the following object of study: 
"system for testing metal objects subjected to different loads, and ensuring the processes of signal 
transmission in terms of minimizing noise and random effects and planning the volume of 
processed applications, containing measurement and specific information". 

 Approbation of dissertation: 
 The main stages of the dissertation are presented at international scientific conferences at the 

Technical University of Gabrovo, Technical College of Lovech, International Scientific Conference 



 5 

on Communications, Informatics, Electronics and Energy Systems "CIEES", international journals 
"Journal of Engineering Science and Technology Review" and Advances in Intelligent Systems and 
Computing, indexed to international Scopus and IEEE databases. 

  
II. SHORT CONTENT OF DISSERTATION 

 
 CHAPTER I: SENSOR TECHNICAL EQUIPMENT AND AI BASED MODELS FOR 
ANALYSIS OF ANALYSIS OF TRANSMITTED SIGNALS AND PARAMETRIC 
INFORMATION 

1.3. Applied technical approaches for digital signal processing and noise reduction in 
communication channels 

Signal processing can be considered as a set of processes of sequential conversion of signals 
in order to reduce the effect of noise and improve quality. Different processing methods are applied, 
which can be divided into the following categories: 

 Analog Signal Processing (ASP); 
 Digital Signal Processing (DSP); 
 Processing of continuous signals over time; 
 Processing of discrete signals over time; 
 Nonlinear Signal Processing (NSP). 

In turn, DSP methods are divided into: 
  Non-parametric methods: 

Ø Analysis in the frequency domain; 
Ø Time domain analysis. 

  Parametric methods: 
Ø Models with sinusoidal functions; 
Ø Stochastic models. 

  Hybrid methods: 
Ø Combined and Innovative methods; 
Ø Recursive methods. 

DSP technical approaches include a wide range as some of the better known ones are 
presented in fig. 1.11. 
 

 
Fig. 1.11. Some more well-known technical approaches to digital signal processing 

 
A significant problem in communications is the noise generated in the communication 

channels during the transmission of signals leading to significant changes in their form, whether 
analog or digital. White Noise (WN), Correlated Noise (CN) and other types of effects can occur 
and be superimposed. 

Wavelet Transforms
• Daubechies wavelets;
• Haar wavelets;
• Littlewood–Paley wavelet;
• Symlets wavelets;
• Coiflets wavelets;
• Biorthogonal wavelets.

Fourier Transformations
• Continuous Fourier Transform (CFT);
• Fourier Series (FS);
• Discrete Fourier Transform (DFT).

Decimation
• Decimation in Time (DIT);
• Decimation in Frequency (DIF).

Sampling
• Down Sampling;
• Up Sampling;
• Sampling Rate Convertion.

Interpolation
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This requires the application of various filtration methods, which can be grouped into two 
main categories: 

 Infinite Impulse Response filters - IIR units (filters with infinite impulse response); 
 Finite Impulse Response filters - FIR units (filters with final impulse response), 

which are presented in fig. 1.12. 
 

 
Fig. 1.12. Methods for designing IIR and FIR filter sections 

 

I: Infinite Impulse Responce

II: Finite Impulse Responce
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Another possibility to reduce the effect of noise and improve the quality of transmitted 
signals in severely affected communication channels is associated with the use of: 

 synchronous detection methods; 
  technical approaches for extended spectral analysis; 
  complex periodic signals; 
  wavelet transformation. 

 
Fig. 1.13. Noise suppression methods in system devices in communications 

 
Improving the specific signal-to-noise ratio through the synthesis of linear prediction filters 

and adaptive digital filters is also seen as a technical tool in this direction. The application of 
technical approaches to stabilize the minimum root mean square error achieves satisfactory levels of 
all noise levels in different categories of communication systems. The combination of technologies 
for multiple access to the communication channels TDMA, OFDMA, FDMA in the implementation 
of iterative communication receivers can achieve significant suppression of nonlinear distortions. 
The effect of undesirable disturbances can also be compensated by a method combining the 
approaches - Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST). 

From a different point of view, a significant problem in a number of communication devices 
is related to limiting their sensitivity to noise. This requires the use of methods to achieve this 
effect. For the purpose of Fig. 1.13 a systematization has been made, mainly affecting the field of 
digital communications. 
 

1.5. Measurement of force effects. Sensor elements 
1.5.1. Areas of application of force measurements on objects 
Measurements of forces on details and the development of technologies in terms of the 

technical sensor elements and measuring instruments used are becoming more widespread in 
various fields of industry. The problem is particularly affected during the separate stages of steel 
production and testing in large metallurgical companies and enterprises. Apart from steel 
production, other industrial areas that can be mentioned are: 

 Аgricultural industry; 
 Sophisticated systems for testing loads in large-scale complex metal structures and 

structures such as bridges and cranes; 
 Automotive industry - trucks and platforms; 
 Rail transport - testing of propulsion mechanisms, detection of ignition in diesel engines 

of locomotives, etc. 
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A current field of application, which deals with the task of monitoring power loads and 
integration of measuring sensors, is medicine in connection with the production of a series of 
medical devices and systems. Here you can specify:  

 Outpatient drug dosing systems; 
 Precision equipment for surgical interventions; 
 Saline pumps; 
 Load various components of complex medical equipment. 

Another modern and interesting field of application is biomedical research in determining 
the degree of strength in the analysis of fingerprints by touch and pressure, assessment of cell 
resolution, pressure monitoring in a variety of technical research tools. 

 
1.5.2. Criteria for selection, calibration and sensitivity of sensors for measuring force 

effects  
The selection of a specific type of force sensors needs to be taken into account, both with the 

specifics of the test object and the environment of the experiment, and with some basic basic 
criteria, respectively: 

 Output signal at the rated load; 
 Max. Nonlinearity; 
 Slip at the contact interface; 
 Mass of sensor element. 

At the next stage, criteria can be defined for the selection of a complete system for changing 
the forces of impact on objects, shown in fig. 1.17. 

An essential aspect related to the reliability of the measurement data and the accuracy of the 
measurements is the correctness of the sensor calibration, which goes through three stages: 

v Specifying the calibration 
v Undertaking the calibration; 
v Analysis of the calibration data.  

The first of the stages regulates the following current issues: 
 Calibrate in situ or in a laboratory? 
 Calibrate the whole system or just the transducer? 
 Whether to request adjustment? 
 What is the required uncertainty level? 
 What is the direction of force and the operating range of force? 
 What are the end-loading conditions in the application? 
 What is the temperature range for the application? 

 

 
Fig. 1.17. Criteria for selection of measuring system 

for monitoring of force impacts on sites 

Criteria for choose of force measurement system

1. Transducer 
operating 
capacity

2. Single 
or multiple 

transducers

3. Uni-directional 
or bi-directional 

transducer

4. Static 
or dynamic 

measurement

5. Multi-component 
force 

measurement

6. Instrumentation 
and data collection
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The set of types of output voltages to be measured and recorded, as well as taken into 

account in power sensor calibration procedures, may include the following: 
 standard uncertainties associated to the standard weight; 
 weights creep; 
 resolution of the system; 
 hysteresis; 
 sensor without load;, 
 repeatability of the measurement of weights; 
 environment temperature. 

According to the literature, the following types of Force Calibration Machines can be used 
for the purposes of the calibration process, respectively: 

 Deadweight; 
 Hydraulic amplification; 
 Lever amplification; 
 Comparator with one or three reference force transducers. 

An important feature of the sensory elements used in installations for monitoring the forces 
of impact on tested metal objects is "Sensitivity". The indicated quality indicator of the measuring 
procedures can be significantly influenced by the following factors: 

 Improper geometric positioning of the sensor element during installation; 
 Non-optimal location of the sensors; 
 Change the properties of the elements; 
 Presence of parasitic loads, etc. 

In these cases there is a need to place compensating components in the moments of deformation and 
bending. 
 

1.5.3. Categorization of sensors for monitoring and registration of force impact 
The research gives grounds for the formation of standard categories of sensory technical 

means for measuring force according to various features, but in general the categorization given in 
fig. 1.18. 

 
1.6. System technical solutions for measuring force loads on metals and measuring 

technical means 
According to the measuring devices for monitoring and recording of force loads are divided 

into the following categories: 
 „Direct Measurements ”to which they belong: 
ü Force transducers; 
ü Load cells; 
ü Dynamometers. 

 "Indirect measurements" to which may be attributed: Sensors called strain gauges, which 
are usually mounted to mechanical systems. 

The following industrial areas concerning the measurement of forces on metal structures and 
structures can be defined: 

 Determining the forces of the machine in the process of rolling steel industry; 
 Optimal and controlled application of pressing forces on metal plate and sheet material; 
 Machines for testing materials used in mechanical testing, used for the initial production 

and control of subsequent operations with products; 
 Mechanical testing of steel materials and construction products used in construction; 
 Application of tensile forces on paper, plastic, rolls of film and laminate; 
 Cutting forces on metal plate and sheet material; 
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 Determining the forces of the hook and rope at anchor for ships and tankers; 
 Overload control in towers and overhead cranes and elevators; 
 Determining the forces applied to the wheels of the truck on paved roads; 
 Measurement of the forces coming to the feet of the tower of oil refineries; 
 Forces applied to regulate the voltage of cables during their laying and installation; 
 Forces applied during underwater laying of tubular equipment. 

 

 
Fig. 1.18. Categories of sensors for monitoring and recording of forces 

 
With respect to measuring instruments for indirect measurements can be divided into 

"metal" and "semiconductor". Metal utensils, in turn, are divided into the following groups: 
 Thin wire strain gauges; 
 Foil strain gauges; 
 Metal film strain gauges. 

They are suitable for monitoring long-term dynamic loads, while semiconductors for recording 
loads applied in a limited area due to their high sensitivity.  

There are a number of scientific studies that focus on monitoring and measuring the induced 
deformations and the associated applied forces of loads. The use of the following technical means is 
considered: 

 Photogrammetric strain measurement systems; 
 Foil strain gauges; 
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 Fiber Optical strain gauges like FSG and FBG sensor elements,  
through which forces of the order of 26 kN are registered. Another publication discusses a 
computer-based system known as the "Computerized Dynamometer" allowing the inclusion of 8 
sensors based on load cell type S. The hardware includes: 

 Mechanical dynamometer; 
 Digital dynamometer with internal sensors; 
 Digital dynamometer with external sensors. 

Sensor data were collected via an electronic board with a USB driver, ADC, multiplexer, 
amplifiers and filter units next to the sensors used [63]. Wearable ground reaction force (GRF) 
measuring system using biaxial force sensors based on an optical sensor mechanism was designed 
in [64]. Here, the physical interference between two axes of the custom sensor has been minimized 
by the independent sensor by applying a cantilever structure to both axes and the hysteresis and 
repeatability of the specialized sensor. An experimental scenario for measuring a pair of applied 
forces and vibrational effects is discussed in [65]. The measurements were performed by: 

 pressure sensor matrices; 
 acceleration sensors. 

Another study is aimed at evaluating systems for measuring the impact on metal objects 
using technical approaches using: 

 Polyvinylidine fluoride (PVDF) force transducers, кwhich were subsequently modified 
as Superimposed PVDF force/strain gauges; 

 Miniature piezo-electric load cells, having quartzdynamic transducer. 
Strain gauges have been used to monitor the static and dynamic response of metal structures. 

The measuring instruments were positioned in different places inside the structures and a DAC 
USB system was used to monitor their condition. In another study an Arduino based measuring 
system was implemented, operating with: 

 Mechanical gauges; 
 Optical gauges; 
 Electrical gauges, as follows; 
ü Capacitive gauges; 
ü Inductive gauges; 
ü Photoelectric gauges. 

Another study is related to the development of a microgripper system, allowing the 
determination of two basic parameters, respectively "position" and "force", in connection with the 
testing of different types of conductors. The system has components for capturing and releasing test 
objects, two groups of tenzoresistive transducers, helping to read the specified non-electrical 
quantities. An analysis of the static and dynamic characteristics of the measuring technical means 
used has been performed. In another research a strain gauge transducer was modeled for the 
mechanical loading of Components of Symmetrical Coulters in agriculture. Appropriate procedures 
have been carried out in relation to adequate positioning of technical measuring instruments and 
improvement of sensory characteristics such as "sensitivity", "linearity", "minimization of error", 
"extension of the measuring range" and "more efficient reading of the load spectrum".  

The object of research in connection with the measurement of force and application of strain 
gauges can be not only stationary metal objects and equipment, but also completely different 
environments such as the fluid-wall interaction of open water channels. Regarding the collection of 
sensor data, a set of six technical elements was used, subjected to mechanical bending between two 
position points. In the considered system there is an application of the apparatus of regression 
analysis for determination of the interrelation between the load and the instrumental signals. The 
approach described can be used for sensory calibration procedures. Another study addressed the 
task of analyzing the mechanical properties of polymeric materials and their characteristics to assess 
the applied force according to the required flexibility criteria. The mechanical properties of the test 
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materials - high density polyethylene, phenol-formaldehyde and natural rubber, were tested by force 
deformations in the range from 1 to 20 N using measuring strain gauges. 

The impact of forces of different sizes on parts and structures can be registered by applying 
a wide range of transducers. System solutions are developed with combined use of several types of 
technical means for measuring between resistive, inductive, capacitive, piezoelectric, 
electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic, vibration, acoustic, gyroscopic, 
etc. One of the most commonly used sensor types is strain gages. Strain gauge transducers are 
divided into metal and semiconductor. They are compared according to various criteria such as 
measuring range, sensitivity, resistance, resistance tolerance and dimensions. They are mainly 
connected in DC bridge measuring circuits in different configurations with one working, two 
working in adjacent arms, two working in opposite arms and four working converters. 

Research examines various system solutions for measuring forces. Automated wireless 
network monitoring systems related to the measurement of intense elastic surface deformations in 
serviced plastic-coated metal pipelines are widespread. In another study a multi-channel measuring 
system for evaluation of sensory elements for deformation based on USB communication interface 
was designed. The test modules are equipped with an 8-bit microcontroller, an amplifier with 
adjustable gain, a Bessel low-pass filter and an analog-to-digital converter controlled by SPI and 
other control signals. 
 

1.8. Applications of forecasting analysis devices in information and communication 
systems in forecasting analysis tasks 

According to research, the forecast analysis based on artificial intelligence in the field of 
communications concerns two main areas: 

 Direction №1: the declining influx of users of services in the mobile telecommunications 
industry due to interruptions or unforeseen events in mobile and cellular 
communications [104-111]; 

 Direction №2: the overall traffic from incoming customer requests in services in the 
telecommunication and LTE networks. 

The main mathematical tools used for quantitative forecasting in relation to the defined 
target areas can be divided into three main categories (Fig. 1.21), respectively: 

 Machine learning; 
 Applied statistics; 
 Artificial neural networks.  

 
1.9. Artificial neural networks in the processing and reduction of noise effects in 

information and communication systems 
Research regarding the processing and analysis of signals in information and communication 

systems in various fields of industry is mainly related to the recognition of the following objects: 
 Speech signals; 
 Sound signals; 
 Biomedical signals, 

in channels representing a transmission medium with the presence of noise. The tools that are 
applied for identification are: 

 Deep Neural Networks (DNN); 
 Hidden Markov models; 
 Multivariate Analysis of Variance (MANOVA); 
 Multi-layer Perceptrons and other. 
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 Fig. 1.21. Apparatus for predictive analysis in communications 

 
According to other studies concerning the processes of noise assessment and reduction, there is 

the applicability of specialized approaches and algorithms, among which can be specified, 
respectively: 

 Independent Component Analysis, Recursive Least Squares (RLS), and Recurrent 
Neural Networks in automated speech recognition systems; 

  Support Vector Machine (SVM) method, k-means cluster analysis, k - Nearest 
Neighbors (k-NN), in optical communications; 

  DNNs and Convolutional Neural Networks in Orthogonal Frequency-Division 
Multiplexing (OFDM) and Two-Dimensional Magnetic Recording (TDMR) systems; 

  RNN neural architectures in combination with Long Short Term memory (LSTM) - a 
variant of RNNs, and Gated Recurrent Unit (GRU-GRU) in Micro-Electro-Mechanical 
System Inertial Measurement Units (MEMS-IMU); 

  Deep-Learning Neural Networks (DLNNs) in the development of biomedical electronic 
devices; 
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  Principal Component Analysis, CNN, Feed-Forward Neural Networks in case of 
parameter reduction: 
ü Signal-to-Noise Ratio (SNR); 
ü SNR RMS (Root Mean Square) parametric values; 
ü Peak SNR; 
ü Structural Similarity Index Measure (SSIM), 

 in image diagnostic systems; 
  Linear regression analysis, Discriminant analysis, Naïve Bayes algorithm, Decision tree 

method, Adaptive neural-fuzzy interface systems in electronics. 
 

Conclusions to the first chapter 
 

v The peculiarities of the main types of interfaces and standards for transmission of sensor and 
parametric information in the implementation of sensor modules and multifunctional boards 
in electronics and communications are considered; 

v A general functional classification of the sensory elements used in different fields of 
industry and technology is made according to the excitatory factors and the principle of 
transformation. The main types of characteristics that can be studied in the study of sensory 
functionality are defined; 

v A classification of intelligent communication applications and technologies has been 
compiled and a comparative analysis has been made between WAN and LAN technologies, 
as well as with regard to basic IEEE standards for data transmission; 

v Basic technical measuring means for monitoring and registration of measurements of force 
loads on metals, details and constructions and sensor systems for measuring loads in 
different spheres of industry, as well as the essence, specifics and features of the apparatus 
of artificial neural networks have been studied; 

v The areas of application of methods, algorithms and approaches of mathematical and 
applied statistics, machine learning and artificial intelligence, defined for predictive analysis 
in telecommunication systems in relation to users of communication services and processed 
traffic, are defined; 

v An analysis of the methods and technical approaches for digital signal processing and 
filtering and the role of artificial intelligence in reducing noise to signals in information and 
communication systems in various fields. 
 

 CHAPTER II: RECOGNITION OF NOISES AND SIGNALS WITH NOISES IN 
SIMULATION MODELING COMMUNICATION CHANNELS  

2.2. Noise identification models based on artificial neural networks with 
backpropagation training 

2.2.1. Investigation and synthesis of artificial neural networks for noise recognition in 
Levenberg-Marquardt training algorithm 

A study is presented in connection with the possibility of applying the device of artificial neural 
networks on some of the most common types of noise accompanying the process of transmission of analog and 
digital signals in communication channels. The analysis applies to the following types of noise: 

Ø Gaussian White Noise - GWN; 
Ø Periodic Random Noise – PRN. 
For this purpose, a simulation of the test noises at fixed identical values of the standard 

deviation for GWN and the spectral amplitude at PRN, respectively 0.02, 0.04 and 0.06, was made 
using the software product LabVIEW. Following the analogy of the indicated levels of the 
simulation parameters, an information sample was formed, which included 2000 observations with 
three informative features, respectively GWNs - 1000 standards, and PRNs - 1000 samples. 

 An approach for synthesis of architectures based on three-layer architectures of artificial neural 
networks with direct signal propagation and error back propagation is introduced. Regarding the objectives of 
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the study, procedures are envisaged using the Levenberg-Marquardt algorithm when experimenting with 
training parameters (goal, learninig rate, min_grad, etc.) with successive growth of neurons in the intermediate 
(hidden) layer in the range of 5 to 20 neurons . The training and selection of artificial neural networks for the 
recognition of GWNs and PRNs is also associated with setting different types of output activation: 

 linear – purelin type; 
 hyperbolic tangent sigmoid – tansig type; 
 log-sigmoid– logsig type. 

With linear activation, a minimum of 98.3% and a maximum of 100.0% accuracy were recorded for 5 
and 15 intermediate neurons. The error ranges from 0.0118 at 15 to 0.0441 at 5 hidden neurons. Regarding 
tangent-sigmoidal initial activation, the lowest accuracy of 98.3% was observed in 10 and 20 hidden neural 
units, while the highest 100.0% was reached in 8 and 13. The second quality criteria showed a change from 
0.0021 to 0.0140, respectively at 13 and 19 neurons in the intermediate layer. In connection with the last 
applied type of output activation, low and high accuracy are observed with an approximate difference of about 
50%, with the second levels predominating. There was also a clear significant increase in times the root mean 
square error over the whole range of hidden neural units compared to tansig and purelin types. A minimum of 
47.7% and a maximum accuracy of 100% were recorded for 8 and 10 hidden neurons, for which MSE = 
0.2500 and MSE = 0.1255 were achieved. 
 

Table 2.1. Results of recognition of GWNs and PRNs with artificial  
neural networks with linear output transfer function 

Hidden 
neurons 

Accuracy,  
% 

Mean-Squared  
Error 

5 94.0 0.0441 
6 97.0 0.0310 
7 97.7 0.0255 
8 97.3 0.0284 
9 98.3 0.0224 
10 97.3 0.0282 
11 99.7 0.0201 
12 98.0 0.0265 
13 97.3 0.0256 
14 98.3 0.0251 
15 100.00 0.0118 
16 99.7 0.0188 
17 98.3 0.0235 
18 99.3 0.0170 
19 99.0 0.0173 
20 98.7 0.0219 

 
Table 2.2. Results of recognition of GWNs and PRNs groups of signals with artificial  

neural networks with tangent-sigmoidal output transfer function 
Hidden 
neurons 

Accuracy,  
% 

Mean-Squared  
Error 

5 99.3 0.0078 
6 99.3 0.0115 
7 99.0 0.0065 
8 100.0 0.0074 
9 98.7 0.0102 
10 98.3 0.0115 
11 99.3 0.0107 
12 98.7 0.0121 
13 100.00 0.0021 
14 98.7 0.0126 
15 99.3 0.0069 
16 99.7 0.0091 
17 99.7 0.0069 
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18 98.7 0.0140 
19 99.7 0.0130 
20 98.3 0.0137 

 
Table 2.3. Results of recognition of GWNs and PRNs groups of signals with artificial  

neural networks with log-sigmoid output transfer function 
Hidden 
neurons 

Accuracy,  
% 

Mean-Squared  
Error 

5 94.3 0.1498 
6 98.0 0.1357 
7 98.7 0.1904 
8 47.7 0.2500 
9 99.3 0.1276 
10 100.00 0.1255 
11 48.3 0.2500 
12 56.0 0.1807 
13 99.3 0.1289 
14 49.3 0.1904 
15 99.7 0.1268 
16 99.3 0.1281 
17 99.7 0.1262 
18 52.0 0.1864 
19 99.7 0.1255 
20 99.7 0.1276 

 
 

 
a) 

 
b) 

 
 c)  

Fig. 2.4. Selected neural networks for recognizing GWNs and PRNs at output  
a) linear, b) tangent sigmoid and c) log-sigmoid activation function 

 
There is a tendency of advantage of the tangent sigmoid over the linear and especially over the 

logarithmic-sigmoidal activation function given the obtained lower values of the criterion "root mean square 
error". Figure 2.4 presents the experimentally selected networks with 15, 13 and 10 intermediate neurons with 
the best performance.  
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2.3. Models for recognizing digital signals with the presence of noise through artificial 

neural networks with backpropagation training 
2.3.1. Investigation and synthesis of artificial neural networks for noise identification 

of digital signals 
At the next stage of the analysis, rectangular signals with the presence of GWN and PRN 

were simulated at the levels of the configuration parameters 0.02, 0.04 and 0.06. A similar approach 
is applied here with regard to the assessment of the quality of classification and the activities for 
selection of neural networks for identification. In fig. 2.12 and fig. 2.13 oscillograms of the target 
signal groups for analysis are presented, while the results of the study are presented from table 2.4 
to table 2.6. 

According to the application of the linear activation function at the output of the neural networks, high 
variations of the accuracy were obtained, varying from 93.3% to 100.0% for 6 and 16 neural computing units. 
The values of the root mean square error do not fall below the level of 0.0150 as the lowest MSE = 0.0155 and 
the highest MSE = 0.0747 were observed, respectively at fixed 16 and 6 neurons in the structural hidden layers 
of the studied networks. 

Table 2.4. Results of recognition of rectangular signals with GWN and PRN  
with artificial neural networks with linear output activation function 

Hidden 
neurons 

Accuracy,  
% 

Mean-Squared  
Error 

5 96.0 0.0355 
6 93.3 0.0747 
7 97.0 0.0511 
8 95.7 0.0396 
9 98.7 0.0294 
10 98.7 0.0227 
11 98.7 0.0264 
12 98.0 0.0352 
13 99.3 0.0191 
14 98.7 0.0240 
15 99.0 0.0234 
16 100.00 0.0155 
17 97.3 0.0332 
18 99.7 0.0160 
19 96.3 0.0273 
20 99.0 0.0241 

 
Table 2.5. Results of recognition of rectangular signals with GWN and PRN 

 with artificial neural networks with tangent sigmoid output activation function 
Hidden 
neurons 

Accuracy,  
% 

Mean-Squared  
Error 

5 91.7 0.0608 
6 99.0 0.0076 
7 99.3 0.0072 
8 99.00 0.0084 
9 98.3 0.0142 
10 98.0 0.0162 
11 99.3 0.0063 
12 97.7 0.0186 
13 98.3 0.0158 
14 98.3 0.0144 
15 99.0 0.0117 
16 99.7 0.0057 
17 100.0 0.0049 
18 99.7 0.0171 
19 99.0 0.0136 
20 98.7 0.0159 



 18 

 
In the course of the experiment with tansig initial activation type, a minimum indication of 

accuracy of 91.7% was found in 5 hidden neurons, and for the rest of the test interval the criterion 
changed from 97.7% at 12 to its highest value of 100.0% at 17 neuron. Mean square error levels 
range from 0.0186 to 0.0049 for 12 and 17 neurons in the latent layer except for recorded MSE = 
0.0608 for 5 intermediate neurons.  

Analyzing the results contained in Table 2.6, a similar trend is observed for strongly 
increased mean square error rates compared to purelin and tansig in the indicated course of change 
of hidden neurons, established in the previous part of the research focused only on noise analysis in 
simulated communication environment. Here, too, deterioration of precision for specific 
intermediate neurons is observed, although there are no such clearly distinguished groups of "low" 
and "high" variations of the indicator with a significant difference, ie. there are intermediate levels - 
for example 60% at 11; 70.7 at 13; 76.7 at 12; 83.7 in 8 intermediate neurons, etc. There is an 
inverse relationship between the decrease in accuracy from 100.0% to 70.7% with an increase in 
computational neurons for a limited part of their range - from 9 to 13. The lowest level of quality 
criterion 49.3% was registered in an architecture with seventeen intermediate neurons. The root 
mean square error varies from 0.1260 for the case of the highest accuracy to 0.2009 at 11 neurons in 
the hidden network layer.  

 
Table 2.6. Results of recognition of rectangular signals with GWN and PRN  
with artificial neural networks with log-sigmoid output activation function 

Hidden 
neurons 

Accuracy,  
% 

Mean-Squared  
Error 

5 95.7 0.1427 
6 89.0 0.1917 
7 95.3 0.1445 
8 83.7 0.1960 
9 100.0 0.1260 
10 98.3 0.1330 
11 60.0 0.2009 
12 76.7 0.1603 
13 70.7 0.1963 
14 99.0 0.1285 
15 98.7 0.1284 
16 52.3 0.1868 
17 49.3 0.1889 
18 74.3 0.1612 
19 99.0 0.1282 
20 57.3 0.1831 

 

 
а) 

 
b) 
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c) 

Fig. 2.14. Selected neural networks with a) linear, b) tangent-sigmoid  
and c) log-sigmoid output activation function for recognition  

of square signals with GWN and PRN 
 

Architectures of networks with 16, 17 and 9 intermediate structural neurons were found, meeting the 
need to maintain optimality between the expected high accuracy while recording the minimum MSE reading 
given in fig. 2.14.  

 
2.4. Research and selection of FFNN neural architectures to identify noise impacts and 

digital signals with superposed noise based on Scaled Conjugate Gradient training.  
2.4.1. Synthesis of feed-forward neural networks in SCG algorithm for recognition of 

simulated GWN and PRN interfering effects in communication channels. 
Another potential possibility for neural synthesis is associated with a change in the training 

algorithm and the type of initial activation function such as: 
v Levenberg-Marquardt was replaced by Scaled Conjugate Gradient (SCG) training; 
v Softmax type activation is set in the structural output neurons. 

The specificity of the entered parameters determines the initial results from the application of the 
neural apparatus to be accepted as "probability" and not as "numerical interpretation".  

Table 2.7 contains the results obtained in the study of FFNNs using SCG for the detection of 
random noise effects - GWN and PRN, with a set change in the calculated structural units in the 
hidden layers from 3 to 31. Criteria to be evaluated are “accuracy” and "Cross-Entropy (CE)” 
recognition. Satisfactory levels of accuracy above "0.99" were found for the analyzed interval of 
intermediate neurons. The lowest found accuracy is 92.8% in the baseline architecture of the study, 
while the highest value of the criterion 99.8% was recorded for the cases of 11, 13, 15, 21, 25, 27 
and 33 neurons in the intermediate layer of FFNNs. In this case, the choice of the final type of 
identification model is based on the achieved minimum entropy "5.58345e-0" for an architecture 
with 25 neurons, shown in fig. 2.24. 

Table 2.7. Results of selection of FFNNs in SCG training  
for GWN and PRN identification 

Hidden  
neurons 

Accuracy, % Cross-Entropy 
indicator 

3 92.8 2.46521e-0 
5 99.0 4.29463e-0 
7 99.7 4.84113e-0 
9 99.7 4.59377e-0 
11 99.8 6.07409e-0 
13 99.8 6.76620e-0 
15 99.8 6.12029e-0 
17 97.2 1.97068e-0 
19 99.2 3.74847e-0 
21 99.8 6.06058e-0 
23 99.2 4.04383e-0 
25 99.8 5.58345e-0 
27 99.8 5.77250e-0 
29 99.7 6.64407e-0 
31 99.2   4.01312e-0 
33 99.8 6.61422e-0 
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Fig. 2.24. Selected FFNN neural architecture in the course  

of SCG training to identify GWN and PRN impacts 
 

 
Fig. 2.25. Cross-Entropy in the synthesized FFNN neural architecture  

in the course of SCG training for identification of GWN and PRN impacts 
 

 
Fig. 2.26. Error diagram for the selected FFNN neural architecture  

in the course of SCG training to identify GWN and PRN impacts 
 

The tendency of such and gradually decreasing change of the CE indicator from training, 
validation and testing in fig. 2.25 testifies to the correctness of the applied processes. The overall 
training process covers 103 iterations as the "best validation performance" was found in the 97th 
training cycle. 
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A histogram of the network errors is shown in fig. 2.26, for which there is a close location of 
the indications from the main network processes regarding the data from the test sample to the level 
of the basic zero error. According to the presented dependence, the errors from the application of 
the model fall within the range of levels "-0.04966" and "0.04966". 

 
2.4.2. Selection of FFNNs in SCG algorithm for identification of simulated digital 

signals with superimposed GWN and PRN random effects in communication channels. 
Given the positive indications of adapting SCG training in the analysis of simulated 

interfering effects of the environment in communication channels, the task of recognizing noises 
that are superimposed on transmitted digital signals was moved. In this regard, Table 2.8 
summarizes the accuracy data and the CE criterion for the same range of hidden neurons as in the 
previous study. Regarding architecture, a minimum accuracy of 69.3% was observed for 3 units of 
calculation and CE = 1.27713e-0. Approximate levels of accuracy of "91.0%", "94.0%", "96.0% to 
98.8%" were found during the training of FFNNs with increasing neurons in the intermediate layer, 
the maximum of which refers to an architecture with 31 hidden neurons and CE = 3.86609e-0. 

 
Table 2.8. Results of a study of FFNNs in SCG training 

 for digital signal recognition in the presence of GWN and PRN 
 

Hidden  
neurons 

Accuracy, % Cross-Entropy 
indicator 

3 69.3 1.27713e-0 
5 98.2 3.11645e-0 
7 97.4 2.69296e-0 
9 91.6 2.21454e-0 
11 93.9 1.35195e-0 
13 98.7 5.49103e-0 
15 97.0 2.46378e-0 
17 97.8 2.37423e-0 
19 96.7 1.84056e-0 
21 97.2 2.20736e-0 
23 98.6 3.33221e-0 
25 99.3 5.61578e-0 
27 97.8 2.85755e-0 
29 97.9 2.70141e-0 
31 98.8 3.86609e-0 
33 98.3   3.30483e-0 

 

 
Fig. 2.27. Synthesized FFNN neural architecture in SCG training 

 algorithm for digital signal recognition in the presence of GWN and PRN 
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Fig. 2.28. Cross-Entropy for the selected FFNN neural architecture in SCG training  

algorithm for digital signal recognition in the presence of GWN and PRN 

 
Fig. 2.29. Error diagram for the selected FFNN neural architecture in SCG training algorithm for 

recognizing digital signals in the presence of GWN and PRN 
 

The synthesized best model for identification of rectangular signals with influence of 
Gaussian and Periodic noise is shown in fig. 2.27. In connection with the model, a percentage ratio 
of 70:15:15% was used between the data from the input set, divided randomly. Figure 2.28 shows 
the behavior of the network during training, validation and test procedures. A similar and 
downward change in CE was observed, defined as the absence of an indication for neuronal 
retraining. Within 111 of the total number of 117 training cycles, the best network productivity of 
0.027901 was achieved. 

The estimated error variation range observed next to the zero error level in fig. 2.29, from 
the integration of the model for the purposes of the considered task is ± 0.04915. Regarding the 
operation with a minimal part of the training data, the expected errors fall to ± 0.1474. 

 
Conclusions to the second chapter 

 
v An approach has been developed for the study and selection of artificial neural networks 

with direct signal propagation through Levenberg-Marquardt (LM) and Scaled Conjugate 
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Gradient (SCG) training based on a gradient algorithm with reverse propagation of the error 
for recognizing noise and signals with presence of noise in regulation of activation functions 
in analysis of accuracy, mse, cross-entropy indicator, significance of correlation and 
generalized forecast results; 

v Positive and negative aspects have been identified, as well as identical trends in terms of 
quality indicators from the application of linear, tangent-sigmoidal and logarithmic-
sigmoidal activation function in the source layers in the selection of artificial neural 
networks in LM training, determining the lowest level the suitability of the latter type of 
function, despite the achieved positive indications in terms of accuracy and correlation; 

v Architectures based on artificial intelligence and LM training algorithm for identification of 
simulated noises in communication channels for communication in linear, tangent sigmoid 
and log-sigmoid function of the output with obvious advantage of the hyperbolic tangent 
sigmoid tangent are synthesized and analyzed; 

v Structures of artificial neural networks in LM training for recognition and classification of 
simulated digital signals with added effects of Gaussian constant noise and Periodic random 
noise were selected and evaluated according to accepted quality criteria based on 
experimental studies according to differently stated neurons in hidden layers and selection 
of the type of activation function with the best adequacy of the hyperbolic tangent sigmoid 
type; 

v FFNN neural models have been developed and evaluated in the course of SCG training 
algorithm for identification of simulated individual and complex to digital signals random 
Gaussian and Periodic effects in information transmission in communication channels. 

 
CHAPTER III: MODELS FOR QUALITATIVE AND QUANTITATIVE ANALYSIS 

OF INFORMATION BY TENSORESISTIVE TRANSDUCERS 
3.1. System for studying the load of metal objects under the influence of forces based 

on strain gauges. 
Field of interest for the practice in: 
! the field of communications; 
! sensor systems for data collection and analysis in relation to electrical and non-electrical 

quantities; 
! automated information systems for monitoring technological objects and processes in 

the field of industry,  
is the possibility to adapt the specified mathematical instruments in the areas of qualitative and 
quantitative analysis of information registered by strain gauges, with force loading of various metal 
objects. 

In this regard, a concept of a communication system for research and analysis of the degree 
of loading of details under the influence of forces of different sizes, whose block architecture is 
shown in fig. 3.1.  

Test experimental object of the study is a metal cantilever beam, on which forces are applied 
in a perpendicular direction. Two strain gauges are glued to the surface, located so as to provide the 
necessary temperature compensation without the need for an additional sensor element. The strain 
gauges are connected to adjacent arms of a standard DC bridge. As a result of the beam load, the 
electrical and mechanical parameters of the sensors are changed, as well as the voltage in the 
measuring diagonal of the bridge, the size of which is measured by a module of the NI 6002 module 
of the company National Instruments. Through LabVIEW virtual applications, the output voltage of 
the bridge is monitored using a configured serial communication channel between the NI 6002 and 
a personal computer, and filtered in real time via digital recursive (IIR) and non-recursive (FIR) 
units. 
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Fig. 3.1. Architecture of a system for analysis of forces  

on metals by means of strain gauges 
  

It is possible to statistically analyze the registered data in relation to various indicators such 
as minimum, average and maximum values, standard deviation, maximum and minimum times and 
others. Based on experimentally derived mathematical regression models with the STATISTICA 
package, set in LabVIEW using a specified sub-virtual instrument, estimated values of the impact 
force in the cases of one or two strain gages used are calculated.  

Using MATLAB scripts in LabVIEW, the parameters of pre-trained artificial neural 
structures are called and loaded: 

 in the case of direct propagation of signals and back propagation of the error; 
 Generalized Regression Neural Networks, 

for identification of the included working sensor elements in the bridge circuit, currently used in 
measuring the input non-electric quantity - qualitative analysis of data from strain gauge sensors. 
This directly includes non-verbal models for predicting the load from the applied forces on the test 
metal object, ie. there is a task for quantitative analysis of data from strain gages. 

Using the presence of a WEB server to the LabVIEW virtual environment, the possibility 
for remote access to the tools for: 

! establishing and configuring the connection to the USB module, as well as monitoring 
the status of some of its analog inputs. In this case, this is the voltage in the measuring 
diagonal of the bridge circuit with the inclusion of narrow-resistor converters; 

! processing and visualization of measurement and statistical results, as well as those 
from quality and quantitative analysis via the Internet environment. 

The choice of the main Feed-Forward Neural Networks (FFNNs) was made according to the 
main advantage of minimizing the error after the course of each training iteration on the applied 
gradient algorithm. 
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3.2. Virtual tools for filtering and descriptive analysis of measurement data from 
working strain gauges in the study of force loads on metal objects 

In connection with additional descriptive analysis of the registered force effects applied on 
experimental metal objects and proportional voltage levels in the measuring diagonal of the bridge 
circuit with the inclusion of strain gauges, an auxiliary virtual instrument was created. The user 
interface and the block diagram of the application are presented in fig. 3.4. 

The selection of experimental data with the extension ".lvm" for subsequent analysis is done 
through a provided control element, the correctness of which can be pre-checked through Notepad 
and MS Excel environments. Digital data array indicators are designed to display: 

! the applied load force F, N; 
! the measured measuring voltage as a reaction to one sensitive element Uout1, mV; 
! the measured voltage of the bridge circuit when two operating transducers are switched 

on Uout2, mV. 
Functional histograms have been introduced for the indicated monitoring parameters, giving 
information about the levels of their change in the course of the experimental procedures, which can 
be further analyzed and evaluated.  

The main role of the virtual application concerns the use of specified sub-virtual tools for 
extracting set statistical indicators, identical for the three studied values. The analysis covers the 
following parameters: 

! Mean; 
! Moment of Mean; 
! Standard deviation; 
! Variance; 
! RMS value. 

 
a) 
 



 26 

 
b) 

Fig. 3.4. Virtual application for statistical analysis of registered 
 sensory data when loading metal objects 

3.5. Synthesis of artificial neural networks for identification of working transducers in 
the analysis of forces on metals in the bridge circuit of inclusion through FFNNs in SCG 
training. 

Training of three-layer FFNNs neural architectures for quantitative identification of included 
working measuring strain gauges in load monitoring on metal objects was performed. The 
architectures are built on the basis of: 

! input neural layer; 
! hidden or also called intermediate layer when laying neural computing units with 

tangential-sigmoidal activation; 
! output layer when setting the softmax activation function. 

The training processes are based on the Scaled Conjugate Gradient (SCG) algorithm when 
submitting one and two input variables, respectively: 

! “Uout” – the output voltage in the indicator diagonal of the bridge circuit for switching 
on sensor elements; 

! “F and Uout” – combination of applied force on a prototype and respectively reported 
output voltage of a bridge circuit. 

The following initial classification groups are defined: 
! Class №1: Bridge circuit with one working tensoresistive element; 
! Class №2: Bridge circuit with two working narrow resistor converters, 
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where combinations of probabilities at the respective levels are used to encode each output group - 
'1 0' for class №1 and '0 1' for class №2. A feature resulting from the use of the softmax type of 
activation is the interpretation of the initial network results not as "numbers" but as "probabilities". 

An assessment of artificial neural networks was performed after training according to the 
achieved indicators: 

! “Classification Accuracy“; 
! “Cross-Entropy”. 

In relation to the defined classification groups, these indicators are analyzed according to the 
growth of neurons in the hidden layers in the range from 5 to 15. The results of the procedures are 
presented in Table 3.1. For the two cases studied, satisfactory levels of accuracy of about 90.0% and 
100% were obtained for the majority of the analyzed models using one and two input variables. The 
lowest accuracy of 88.50% was registered with "Uout" for 7 intermediate neurons, while for "F and 
Uout" the minimum reading of the criterion found for 7 and 10 hidden neurons was 98.10%. 
 

Table 3.1. Study of FFNN architectures  
for one and two input variables in SCG training 

Hidden 
neurons 

Accuracy, 
% 

Cross-Entropy Accuracy, 
% 

Cross-Entropy 

Uout F and Uout 
5 90.40 1.48916e-0 100.00 4.29507e-0 
6 90.40 1.10373e-0 100.00 13.56822e-0 
7 88.50 1.04975e-0 98.10 1.96157e-0 
8 90.40 1.61987e-0 100.00 13.84607e-0 
9 90.40 1.25043e-0 100.00 14.58822e-0 
10 90.40 1.54694e-0 98.10 2.77515e-0 
11 90.40 1.55780e-0 100.00 2.94522e-0 
12 90.40 1.22658e-0 100.00 13.14914e-0 
13 90.40 2.240027e-0 100.00 3.16867e-0 
14 90.40 3.11792e-0 100.00 14.30631e-0 
15 90.40 3.19195e-0 100.00 3.39250e-0 

 
Based on the presented results, the best architectures shown in fig. 3.9, at 6 in single and 11 

neurons in the intermediate layers at combined input. The models are based on tangent-sigmoidal 
and softmax activation functions in the output layers. The highest accuracy and lowest values of the 
Cross-Entropy indicator found here are 90.40% and 1.10373e-0 for the first and 100.00% and 
2.94522e-0 for the second selected best architecture. 

 

 
а) 

 
b) 

Fig. 3.9. FFNN for quantitative identification of strain gauges  
for a) one and b) two input variables 
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An additional assessment and analysis of the qualities of the synthesized feed-forward 

architectures for quantitative identification of tensoresistive transducers was made in relation to: 
! Cross-Entropy in relation to training, validation and test processes (Fig. 3.10); 
! the output matrices of correct and incorrect classifications for the main network 

processes "training", "validation" and "testing", which are given in fig. 3.11. 
With regard to the Cross-Entropy curves, there are no indications for retraining of the models 

for which similar variation trends have been observed. The best validation performances of 0.51948 
were achieved at the 1-st and 0.058209 at the 9th iteration during training with a duration of 7 and 
15 cycles. 
 

 
а) 
 

 
b) 
 

Fig. 3.10. Cross-Entropy for synthesized FFNNs for quantitative identification  
of strain gauges for a) one and b) two input variables 
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a) 

 
b) 

Fig. 3.11. Classification matrices for the synthesized FFNNs  
for quantitative identification of operating tensoresistive transducers  

for a) one and b) two input variables 



 30 

The classification matrices show the location of the standards with correct and incorrect 
affiliation to a given source group. Regarding the individual use of the "output voltage of the bridge 
circuit", accuracy levels of 91.7%, 75.0% and 100.0% were achieved, respectively in training, 
validation and testing. In the case of application of the "influencing input non-electrical quantity" as 
the second informative feature, identical accuracy of classification was found, equal to 100.0% are 
all the indicated processes, determining the advantages of the second neural model. 

 
3.6. Investigation of neural models with backpropagation for identification of working 

transducers under the influence of forces on metals in Levenberg-Marquardt training 
Actions have been implemented by analogy with the previous ones in the synthesis of models 

for qualitative analysis of information obtained from strain gages. The activities were applied to 
artificial neural networks with backpropagation (FFNNs) using the fastest learning algorithm, called 
the Levenberg-Marquardt algorithm (LM algorithm). The analyzed neural architectures consist of: 

! input layer; 
! intermediate layer with a given tangent-sigmoidal activation function; 
! initial layer with linear activation function. 

Tables 3.2 and 3.3 summarize data on quality criteria for the selection of neural models: 
! accuracy of recognition and classification; 
! mean-squared error. 

Here again, the neural selection approach is followed by feeding one “F” and a combination 
of two input variables “F and Uout” to predict the operation of the strain gauge transducers. 
Architectures with variations of the intermediate neural units in the range from 5 to 15 were studied. 
The initial groups, respectively: 

! „one working transducer“; 
! „two working transducers“,  

are defined by individual output neurons and discrete code combinations that determine their 
functional affiliation. In neural training, kits containing 52 information standards (26 for each test 
class) were used. 

Table 3.2. Results in the study of artificial  
neural networks with one input variable in LM training 

Hidden 
neurons 

Accuracy, 
% 

Mean-Squared 
Error 

5 87.5 0.0973 
6 62.5 0.1861 
7 62.5 0.2590 
8 87.5 0.1447 
9 100.0 0.0832 
10 50.0 0.3517 
11 75.0 0.2813 
12 62.5 0.4670 
13 87.5 0.1331 
14 75.0 0.1585 
15 50.0 0.3843 

 
Table 3.3. Results in the study of artificial 

neural networks with two input variables in LM training 
Hidden 
neurons 

Accuracy, 
% 

Mean-Squared 
Error 

5 87.5 0.0349 
6 100.0 9.9631e-04 
7 87.5 0.0694 
8 100.0 0.0065 
9 100.0 0.0176 
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10 100.00 0.0029 
11 100.0 0.0044 
12 100.0 0.0349 
13 87.5 0.1139 
14 100.00 0.0124 
15 87.5 0.0818 

 

 
а) 

 
b) 

Fig. 3.13. Synthesized models in LM training for identification  
of strain gauge transducers for a) one and b) two input variables  

 
As a result of the study, a relatively larger range of accuracy changes from 50.0% in 15 to 

100.0% in 9 neurons was observed in the single-variable network. A similar conclusion can be 
made with respect to the second criterion, ranging from 0.0832 at 9 to 0.4670 at 12 hidden neurons. 
Compared to the neural models with two incoming input variables, a maximum accuracy of 100.0% 
was found for 6, 8-12 and 13 neurons. The minimum root mean square error is 9.9631e-04 at 6, 
while its highest levels reach 0.1139 at 13 neural units. The selected networks with the best 
indicators at 9 and 6 neurons in the hidden layers in the cases with one and two input variables are 
shown in fig. 3.13. 

 
3.7. Predictive analysis of the force of loading on metals in a bridge circuit for the 

inclusion of strain gauges using FFNN architectures 
FFNNs with linear output activation in LM training algorithm for approximation of the 

following transformation functions were studied: 
! “F = f(Uout1)”; 
! “F = f(Uout2)”; 
! “F = f(Uout1 and Uout2)”, 

where Uout1 and Uout2 are the measured voltages of the bridge circuit of one and two operating 
sensing elements. The basic criteria for selecting a model for predictive analysis of the load on 
experimental metal samples is the root mean square error, analyzed by analogy with the previous 
problem when changing neurons in the hidden layer in the range 5 to 15. For neural selection 
processes, percentages were set between input data as follows: 50% for training, 25% for validation 
and 25% for test procedures. 

 
Table 3.4. Investigation of FFNN architectures for approximation 

 for one and two input variables 
Hidden 
neurons 

MSE  
at Uout1 

MSE  
at Uout2 

MSE at 
Uout1 и Uout2 

5 0.5971 8.0906 0.0029 
6 1.9451 16.0860 0.0152 
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7 0.9674 0.5114 0.0722 
8 0.3302 1.5668 0.6968 
9 0.4279 0.3582 0.0885 
10 11.9616 32.7781 0.4661 
11 24.7131 2.3140 0.5848 
12 2.9257 22.2944 0.6491 
13 23.3295 33.2414 0.0052 
14 19.8530 23.1725 0.5929 
15 26.6503 27.7549 0.9412 

 
Table 3.4 contains data on the recorded error values for the three studied types of neural 

architectures. When applying individual input variables “Uout1” and “Uout2”, minimum values of 
MSE = 0.3302 and MSE = 0.5114 were registered, respectively for 8 and 7 neurons in the 
intermediate layers. The maximum error levels found are 26.6503 at 15 and 33.2414 for 13 hidden 
structural units, respectively. Comparing the obtained errors with those of models with two input 
variables "Uout1 and" Uout2 "we see better qualities in the latter, where MSE changes at significantly 
lower levels in the final range from 0.0029 to 0.9412, respectively at 5 and 15 intermediate neuron. 

 

 
а) 

 
b) 

Fig. 3.17. Selected FFNNs for prediction of force effects  
on metals in switching on a bridge circuit with strain gages  

at the supply of a) "Uout2" and b) "Uout1" and "Uout2" input variables 
 

According to the results for the purposes of the forecast analysis, neural architectures with 
the presence of 8, 7 and 5 computing units in the hidden layer were selected, respectively when 
submitting “Uout1”, “Uout2” and “Uout1 and “Uout2”. Figure 3.17 illustrates the models for informative 
features “Uout2” and “Uout1 and “Uout2”. 
 

3.8. Derivation of linear regression models for forecasting force effects on metals. 
The first part of the research concerning the synthesis of models for quantitative analysis of 

the forces of impact on experimental metal samples consists in the application of the tool of 
regression analysis. In connection, two information categories are defined, including 26 records for 
each group with: 

! output parameter “force F” with “y” entered; 
! controllable factors of the site "registered output voltage from the bridge measuring 

circuit with the inclusion of one "Uout1" and two operating transducers "Uout2" with a 
label "x". 

Regression procedures were applied to the experimental data in the product Statistica 10 to 
check the suitability of zero-degree models, and results with very good quality indications were 
observed, shown in fig. 3.29.  
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                                       а)                                                                          b) 

Fig. 3.29. Regression results for models of a) 1 and b) 2 transducers 
 

y = -0.4749 + 394.7272x1                                                                   (3.1) 
y = -0.4344 + 788.5744x1                                                                  (3.2) 

 
Compared to the accepted baseline significance level α = 0.05, no significant experimental 

regression coefficients bi were found. The obtained Fisher's criteria F (1,24) = 23411 and F (1,24) = 
21234, as well as their respective probabilities p <0.0000, determine the derived models regarding 
the forecasting of forces in productions with the inclusion of one (3.1) and two working sensitive 
sensor elements (3.2) as adequate and fully describing the experimental data in the course of the 
performed diagnostics. Regarding the coefficients of determination R2 compared to the obtained 
forecast models, close high levels were found, respectively R2 = 0.99897588 for one and R2 = 
0.99887101 for two detecting strain gages, confirming the high quality of the forecast regression 
models.  

 
3.9. Research and selection of models for predictive analysis in connection with force 

effects on metal objects on the basis of generalized regression neural networks in two 
operating transducers 

Another type of artificial neural networks that can be used as a basis for creating models for 
predictive quantitative analysis of potential forces on metal objects is that of generalized regression 
neural networks (Generalized Regression Neural Networks - GRNNs). An approach in GRNN-
based research is to perform architecture tests when specifying a different number of input 
variables. Initially, the behavior of neural networks when submitting one and a combination of 
these three informative features, respectively Uout, ∆R/R and ∆l/l was analyzed. Significantly 
elevated MSE readings were obtained over the entire range of variation in the width of the radial-
basis functions in both cases. As a result, models with three input variables were excluded. Neural 
architectures with different combinations of two features and those with individual variables were 
then evaluated sequentially. Negative trends were found in the use of "measured output voltage in 
the indicator diagonal of the bridge" and better but still unsatisfactory results when applying the 
other two individual information signs ∆R/R and ∆l/l.  

 
Table 3.6. Results of the synthesis of RGNN architectures 

 for the cases of one and a combination of two informative recognized  
№ Spread 

indicator 
∆R/R  ∆R/R и ∆l/l 

MSE indicator 
1. 0.80 22.3324 8.6830e-17 
2. 0.81 22.9465 2.0387e-16 
3. 0.82 23.5604 4.6403e-16 
4. 0.83 24.1738 1.0255e-15 
5. 0.84 24.7861 2.2032e-15 
6. 0.85 25.3969 4.6084e-15 
7. 0.86 26.0060 9.3955e-15 
9. 0.87 26.6129 1.8693e-14 
10. 0.88 27.2173 3.6335e-14 
11. 0.89 27.8189 6.9071e-14 
12. 0.90 28.4173 1.2853e-13 
13. 0.91 29.0124 2.3436e-13 
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14. 0.92 29.6037 4.1908e-13 
15. 0.93 30.1911 7.3556e-13 
16. 0.94 30.7744 1.2682e-12 
17. 0.95 31.3532 2.1493e-12 

 
Table 3.6 contains summary data on architectures using one “∆R/R” variable (fig. 3.32.a) 

and the combination of two input variables with the best quality indicators “∆R/R and ∆l/l” (fig. 
3.32.a), 3.32.b), in order to better present the overall assessment process from a negative and a 
positive endpoint. In the synthesis procedures for the two types of generalized regression neural 
architectures, identical ranges of the width of the radial basis layer functions were used, as follows 
from "0.8" to "0.98" with a constant step of increasing the indicator "0.01". By analogy with FFNN 
research, the basic MSE criterion is analyzed here. In the course of the processes of model selection 
when applying one and a combination of two informative features, the same tendency of gradual 
increase of the root mean square error has been established. At the lowest value of "spread" the 
lowest MSE variations were observed. A very negative indication was observed in GRNN based on 
the variable “∆R / R”, associated with a significant tens of times exceeding the levels of MSE 
compared to models with submitted “∆R / R” and “∆l/l”. In an architecture with one informative 
feature, a minimum root mean square error of 22.3324 was found, while in a neural network with 
two input variables, the error was only insignificant at 8.6830e-17. 

 

 
а) 

 
b) 

Fig. 3.32. Investigated GRNN models for predictive analysis  
of force load in a) one and b) two input variables 

 
Regarding the objectives of the forecast analysis, an architecture of a generalized regression 

neural network with the most adequate MSE estimate was chosen when submitting the relative 
changes in resistance and length of sensitive sensor elements at the spread indicator level "0.8". 

 
Conclusions to the third chapter 

! Experimental system for monitoring, filtering, registration, research and statistical analysis 
of non-electric power impacts on tested metal objects and noise reduction with WEB access 
based on strain gauge transducers, multifunction module NI 6002, virtual platform 
LabVIEW, software digital filters and regression diagnostics has been developed; 

! An approach for quantitative identification of the included working sensor transducers and 
forecast analysis of the power loads in testing of metal samples on the basis of processing 
and analysis of experimentally obtained data through artificial neural networks and 
regression analysis is systematized; 
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! Tests concerning the operability of the designed system were performed and experimental 
data were obtained, used as an information basis for the synthesis of models for qualitative 
and quantitative analysis of data from strain gauges; 

! Architectures of artificial neural networks with direct signal propagation and error 
backpropagation were synthesized in Levenberg-Marquardt and Scaled Conjugate Gradient 
training algorithms, evaluated by a set of quality indicators, to identify the operational 
sensor elements to the bridge of their circuit. switching on when measuring forces; 

! Neural backpropagation models have been created on the basis of a selection of input 
informative features for the purpose of predictive analysis of potential load forces during 
testing of strain gauge transducers on test metal objects; 

! Linear mathematical models with the help of regression analysis and models based on 
generalized regression neural networks in different cases of input variables for predictive 
analysis of force effects in testing of test metal objects with inclusion of strain-sensitive 
sensing elements were derived. 

 
CHAPTER IV: FORECAST ANALYSIS OF TRAFFIC IN IMITATED  MODELED 

INFORMATION AND COMMUNICATION CHANNELS OF THE MARKOV CHAINS 
TYPE 

4.1. Simulation modeling of teletraffic systems of the Markov chain type in connection 
with the synthesis of models for predictive analysis of system customer service 

A series of studies were conducted in connection with simulation modeling of Markov 
chains M/M/1 and M/M/c/k at c = 15 and accumulation of several categories of experimental. With 
regard to the formed information sets, the aim is to obtain models for predictive analysis of the 
incoming and processed traffic with the help of a set of different mathematical devices. The 
procedures were performed according to defined factors or parameters in teletraffic simulation, as 
follows: 

Ø Avg. Arrival Rate (x1) – set average speed of receiving requests to the operating server 
stations; 

Ø Avg. Service Time (x2) – fixed average processing time of incoming requests; 

Ø Max Station Capacity k, (x3) – set the maximum number of calls in the queue,  

as well as its responses to the object in Markov chains M/M/1 and M/M/c/k at c = 15, respectively: 
Ø Avg. Cust. N in Station (y1) – average number of users in the queue + average number of 

requests served; 

Ø Avg. Response Time (y2) – average time spent in the queue + average time for servicing 
requests. 

 
а) 

 
b) 

Fig. 4.1. Transition diagrams in simulation modeling 
of the teletraffic system a) M/M/1 and b) M/M/c/k at c = 15 
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Figure 4.1 presents diagrams of the transitions with respect to moment states in the 
simulation conditions of the studied Markov chains. In the course of the simulation processes, 
information sets of experimental data were set aside, respectively, both for training and for 
verification procedures regarding the verification of their adequacy. 

 
4.3. Application of the regression apparatus for deriving models for predictive analysis 

with respect to the service of system users in the Markov M/M/1 chain 
4.3.1. Verification of the adequacy of basic analytical models of zero, first and second 

degree regarding forecast analysis of traffic parameters 
In the initial stage of the presented researches the possibility of deriving forecast models in 

connection with a teletraffic system with unlimited queue and one server station on the basis of the 
classical regression analysis was considered. For this purpose, the adequacy of the basic analytical 
linear and polynomial models given below was set: 

y = b0 + b1x1 + b2x2                                                            (4.1) 
y = b0 + b1x1 + b2x2 + b12x1x2                                                   (4.2) 

y = b0 + b1x1 + b2x2 + b12x1x2 + b11x12 + b22x22                                     (4.3) 
The analysis regarding the parameters of the object y1 and y2 was applied with the help of 

the software package STATISTICA 10. In fig. 4.3 shows the obtained final form of the extended 
matrix of the experiment, reflecting all possible interactions of the controllable factors. After 
defining the extended matrix, we proceeded to the application of the regression apparatus, the 
results of which are shown in fig. 4.4 and fig. 4.5.  

 

 
а) 

 
b) 

 
c) 

Fig. 4.4. Regression results when checking the adequacy of models 
a) (4.1), b) (4.2) and c) (4.3) on parameter y1 for a Markov chain M/M/1 

 
The results show the lowest levels of the coefficients of certainty R2 obtained for the linear 

models for predicting variations of "average number of requests in the queue + average number of 
requests served" and "average total time of stay in the queue and processing of requests" for a given 
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server station. The following coefficients R2 = 0.56457109 and R2 = 0.65195915 were found for the 
responses of the object y1 and y2, defining model (4.1) as inadequate regarding the purpose of the 
study. 

When using polynomial models of a corresponding degree, an increase in the levels of R2 
was observed in relation to the forecast parameters of the served traffic. From the analysis of the 
suitability of model (4.2) regression estimates of certainty of the order of levels of "0.81" and "0.83" 
were registered. With regard to the second degree model, it was found that 88.718634% of the 
change y1 and 91.163600% of the variations of the initial parameter у2 are the result of the influence 
of controllable factors. The remaining 11.281366% and 8.937000% of the change in teletraffic 
parameters are due to accidental disturbances. 
 

 
а) 

 
b) 

 
c) 

Fig. 4.5. Regression results when checking the adequacy of models 
a) (4.1), b) (4.2) and c) (4.3) on parameter y2 for a Markov chain M/M/1 

 
Based on the accepted significance level α = 0.05 and the established Fisher criteria F (5.30) 

= 47.185 and F (5.30) = 61.901, as well as their respective probabilities p less than α, for responses 
of the object y1 and y2 give grounds model (4.3) to be defined as the most complete describing the 
experimental data and the highest degree of adequacy. Regarding the model, the experimental 
regression coefficients b0, b1, b2, b12, b11 and b22 are defined as significant.  

 
y1 = 3.3100 – 12.3648x1 – 5.3000x2 + 9.8364x1x2 + 10.5565x12 + 1.9130x22        (4.4) 
y2 = 4.4735 – 15.1441x1 – 7.2182x2 + 13.0889x1x2 + 11.6577x12 + 3.3240x22       (4.5) 

 
Based on the performed regression diagnostics, final models (4.4) and (4.5) are derived for 

predictive analysis of the target parameters of the processed traffic from a given structural server 
station y1 and y2, presented above. In connection with the qualities of the obtained forecast 
analytical models, it can be said that the expected levels of the coefficient of certainty R2 around 
"0.91" in the forecast analysis of y2 are considered satisfactory. When forecasting the quantitative 
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changes of the traffic load - parameter у1, due to the lower degrees of similarity between the 
theoretical and forecast results, there is a reason to look for more adequate mathematical tools for 
forecast analysis.  

 
4.5. Synthesis of GRNN models for predictive analysis of the served user requests of 

server stations in the M/M/c/k chain with different input variables and training algorithms 
In the next stage, we moved on to research aimed at regression modeling, analysis and 

evaluation of the effectiveness of one of the types of artificial neural networks, which are specified 
for the purposes of predictive analysis - generalized regression neural architectures. The object of 
forecast analysis is "the average number of requests to be called in the queue, added to the average 
number of processed requests from the system server station (parameter y1)" is the Markov chain 
M/M/15/k. GRNNs were created and analyzed for strictly defined 45 structural units in the radial-
base layers. The actual research processes were divided into three phases, consisting in the synthesis 
of GRNNs based on different amounts of learning variables, respectively: 

v Single input effects; 
v Combinations of two controllable factors; 
v A set of three independent informative features. 

Two baseline indicators, Mean Squared Error and Mean Absolute Error, were assessed, with a 
gradual increase in the spread indicator at identical levels from 0.15 to 0.95 for structural neurones 
with radial-base layers. The results of the analysis of neural functionality are summarized 
sequentially from Table 4.5 to Table 4.7. 

 
Table 4.5. MSE and МАЕ indicators in the synthesis of generalized regression neural networks for 

forecasting the served requests in the Markov chain M/M/c/k when applying individual input 
variables 

Spread 
indicator 

MSE MAE MSE MAE MSE MAE 
х1 x2 x3 

0.15 0.0090 0.0642 0.0012 0.0180  
 
 

5.1444e-04 

 
 
 

0.0202 

0.20 0.0202 0.1054 0.0028 0.0307 
0.25 0.0371 0.1514 0.0054 0.0464 
0.30 0.0591 0.1980 0.0091 0.0640 
0.35 0.0843 0.2413 0.0140 0.0838 
0.40 0.1100 0.2791 0.0203 0.1053 
0.45 0.1344 0.3107 0.0282 0.1283 
0.50 0.1564 0.3368 0.0375 0.1521 5.1758e-04  

 
0.0203 

0.55 0.1757 0.3581 0.0483 0.1761 5.2206e-04 
0.60 0.1923 0.3755 0.0601 0.1995 5.2912e-04 
0.65 0.2066 0.3897 0.0727 0.2222 5.3862e-04 
0.70 0.2188 0.4015 0.0857 0.2435 5.5033e-04 
0.75 0.2292 0.4113 0.0989 0.2633 5.6408e-04 0.0204 
0.80 0.2382 0.4195 0.1118 0.2814 5.7987e-04 0.0207 
0.85 0.2458 0.4264 0.1244 0.2979 5.9781e-04 0.0209 
0.90 0.2525 0.4323 0.1364 0.3130 6.1805e-04 0.0211 
0.95 0.2583 0.4374 0.1478 0.3267 6.4079e-04 0.0213 

 
The application of individual input variables x1 and x x2 2 is associated with observed 

significant degrees of increase in quality indicators with increasing width of the radial-basis 
functions. The following variation ranges are registered for: 

v MSE from 0.0090 to 0.2583 at х1 and from 0.0012 to 0.1478 for the variable x2 for the 
defined limit values of the spread indicator; 

v MAE an indicator ranging from 0.0642 to 0.4374 for spread = 0.15 for factor х1 and 
from 0.0180 to 0.3267 for spread = 0.95 for factor х2. 

Comparing the results with respect to the two types of test GRNN architectures, there is an 
advantage in the supply of х1 over the control effect х2. Significant improvement was found in 
models with input variable х3. Here, the minimum mse and absolute errors obtained are 5.1444e-04 
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and 0.0202 for models for spread values “0.15”, “0.20”, “0.25”, “0.30”, “0.35”, “0.40” and “0.45”. 
Maximum MSE = 6.4079e-04 and MAE = 0.0213 were found at the highest limit of the spread 
indicator. 

In connection with the training procedures of GRNNs when using combinations of two input 
input variables, the lowest quality indications were found for the pair “x1 and x2”. The MSE ranges 
from 0.020 to 0.1239 at spread levels of “0.20” and “0.95”, while the MAE varies from 0.0251 to 
0.2973. Exceptions in the initial samples for the indicators are values of MSE = 8.5469e-04 and 
MAE = 0.0147 at the smallest fixed width of the radial-base functions, approaching the achieved 
positive close indications in combinations "x1 and x3" and "x2 and x3". ”. Quantitative ranges for 
MSE and MAE were obtained in the analysis of neural functionality, respectively: 

v from 5.0812е-04 to 6.3866е-04 on the root mean square error and from 0.0201 to 
0.0213 for the mean absolute error at a set value of spread = 0.15; 

v from 4.8957e-04 to 6.3240e-04 for MSE, as well as from 0.0197 to 0.0212 in 
conjunction with the MAE indicator. 

Significantly better performance in architectures with applied combinations of variables "x1 and x3" 
and "x2 and x3" compared to GRNNs with single input effects "x1" and "x2". There are also slight 
advantages in the neural networks trained on the basis of the second - "x1 and x3", over the other 
applied pairs of controllable factors. 

 
Table 4.6. MSE and МАЕ indicators in the synthesis of generalized regression neural networks for 
forecasting the served requests in the Markov chain M/M/c/k in using combinations of two input 

variables 
Spread 

indicator 
MSE MAE MSE MAE MSE MSE 

х1 and х2 х1 and х3 х2 and х3 
0.15 8.5469e-04 0.0147 5.0812e-04 0.0201 4.8957e-04 0.0197 
0.20 0.0020 0.0251 5.1088e-04  

 
 

0.0202 

5.0037e-04 0.0199 
0.25 0.0039 0.0378 5.1216e-04 5.0541e-04 0.0200 
0.30 0.0066 0.0527 5.1284e-04 5.0808e-04  

 
0.0201 

0.35 0.0102 0.0690 5.1317e-04 5.0936e-04 
0.40 0.0149 0.0871 5.1335e-04 5.0970e-04 
0.45 0.0207 0.1065 5.1397e-04 5.0993e-04 
0.50 0.0277 0.1269 5.1600e-04 5.1138e-04 
0.55 0.0359 0.1482 5.2030e-04 5.1515e-04 
0.60 0.0451 0.1694 5.2723e-04  

0.0203 
5.2170e-04  

0.0202 0.65 0.0554 0.1906 5.3666e-04 5.3091e-04 
0.70 0.0664 0.2111 5.4833e-04 5.4245e-04 
0.75 0.0778 0.2308 5.6206e-04 0.0204 5.5611e-04 0.0203 
0.80 0.0895 0.2494 5.7783e-04 0.0206 5.7183e-04 0.0205 
0.85 0.1012 0.2667 5.9575e-04 0.0208 5.8968e-04 0.0207 
0.90 0.1127 0.2826 6.1597e-04 0.0211 6.0981e-04 0.0210 
0.95 0.1239 0.2973 6.3866e-04 0.0213 6.3240e-04 0.0212 

 
The last phase of the synthesis of GRNN models for predictive analysis consists in the 

evaluation of MSE and MAE indicators against a gradual increase of the spread parameter for the 
case of using three input variables. When submitting the input combination “x1, x2 and x3” the best 
quantitative indicators were obtained in the course of the research, against which the specified 
GRNN architecture is evaluated with the highest degree of adequacy. Numerical ranges from 
4.8341e-04 to 6.3031e-04 for MSE and from 0.0196 to 0.0211 for MAE criteria have been 
established.  
 
Table 4.7. MSE and МАЕ indicators in the synthesis of generalized regression neural networks for 

forecasting the served requests in the Markov chain M/M/c/k in applying three input variables 
Spread 

indicator 
MSE MAE 

х1, х2 and х3 
0.15 4.8341e-04 0.0196 
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0.20 4.9686e-04 0.0199 
0.25 5.0315e-04 0.0200 
0.30 5.0649e-04  

 
 

0.0201 

0.35 5.0809e-04 
0.40 5.0848e-04 
0.45 5.0859e-04 
0.50 5.0985e-04 
0.55 5.1345e-04 
0.60 5.1987e-04 
0.65 5.2899e-04 
0.70 5.4050e-04 0.0202 
0.75 5.5414e-04 
0.80 5.6983e-04 0.0205 
0.85 5.8766e-04 0.0207 
0.90 6.0776e-04 0.0209 
0.95 6.3031e-04 0.0211 

 

 
a) 

 
b) 

 
c) 

Fig. 4.15. Investigations of generalized regression neural networks  
for forecasting the served requests in the Markov chain M/M/c/k  

for a) one, b) two and c) three input controllable factors 
 

In fig. 4.15 illustrates the type of analyzed architectures of generalized regression neural 
networks for one, two and three input variables. Regarding the objectives of forecast analysis of the 
potential average traffic load of server stations in the M/M/c/k chain, models were selected for 
combinations “x1 and x2”, “x1 and x3”, “x2 and x3” and found with the most Better GRNN values for 
"x1, x2 and x3" at the smallest width of the radial basis functions at the level of "0.15". 

 
4.6. FFNN models for forecast analysis of the traffic load of server stations in the 

M/M/c/k chain with different input variables and training algorithms 
4.6.1. Selection of FFNN architectures for predictive analysis of the average served 

traffic from structural server stations in the M/M/c/k chain 
Based on the established advantages in obtaining predictive models through artificial 

intelligence, a basis for expanding research in this direction is formed. Activities for 
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implementation and analysis of the functionality of other types of networks were carried out with 
the introduction of specified conditions and categories of neural learning. In this direction the task 
for synthesis of FFNN models at tangent-sigmoidal and linear activations for predictive analysis of 
the parameter “Avg. Cust. N in Station” by analogy with GRNN for different pairs of variables and 
three controllable factors of the object in the course of the following training gradient approaches: 

v Levenberg-Marquardt algorithm; 
v Bayesian Regularization training; 
v Scaled Conjugate Gradient algorithm. 

 
Table 4.8. Results in the study of FFNN models for predictive analysis  

of input variables x1 and x2 and different training algorithms 
Input variables x1 and x2 

Hidden 
neurons 

Levenberg-Marquardt Bayesian Regularization Scaled Conjugate Gradient 
MSE in testing R  

in testing 
MSE in 
testing 

R  
in testing 

MSE in 
testing 

R  
in testing 

5 3.58376e-5 0.999956 1.62116e-5 0.999971 2.00065e-4 0.999805 
6 1.95550e-5 0.999976 3.05737e-5 0.999974 1.12584e-2 0.986220 
7 2.17066e-5 0.999962 1.87423e-5 0.999969 3.07503e-4 0.999364 
8 1.25622e-5 0.999981 7.87707e-6 0.999978 4.15378e-3 0.994077 
9 1.46942e-5 0.999978 2.88317e-5 0.999960 8.13698e-4 0.998838 
10 3.57247e-5 0.999946 2.83059e-5 0.999971 1.62650e-2 0.979963 
11 3.73982e-5 0.999944 2.07308e-5 0.999972 2.56892e-4 0.999629 
12 1.184425e-4 0.999895 2.87987e-5 0.999973 2.79524e-2 0.982778 
13 2.45482e-5 0.999989 4.27936e-5 0.999965 2.39668e-3 0.995858 
14 4.49284e-5 0.999937 2.49110e-5 0.999975 1.773763-3 0.995772 
15 4.14351e-5 0.999962 4.09594e-5 0.999973 5.27899e-4 0.999341 

 
Accepted baseline criteria for performance evaluation are the "average error" and the 

"correlation coefficient", the first one being of greater importance. The indicators are reported 
according to the test processes of the target neuronal architectures with a defined quantitative 
change of the hidden neurons from 5 to 15 units. The data for the considered synthesis cases are 
systematized from Table 4.8 to Table 4.11. 

 
Table 4.9. Results in the study of FFNN models for predictive analysis  

of input variables x1 and x3 and different training algorithms 
Input variables x1 and x3 

Hidden 
neurons 

Levenberg-Marquardt Bayesian Regularization Scaled Conjugate Gradient 
MSE in 
testing 

R  
in testing 

MSE in 
testing 

R  
in testing 

MSE in 
testing 

R  
in testing 

5 4.39720e-5 0.999950 2.11298e-5 0.999984 3.08028e-3 0.997355 
6 1.62596e-5 0.999967 3.75225e-5 0.999961 2.45964e-3 0.998581 
7 9.70807e-6 0.999989 2.01365e-5 0.999975 2.09834e-3 0.998711 
8 6.50901e-5 0.999921 1.96413e-5 0.999973 1.01533e-3 0.998663 
9 4.76781e-5 0.999924 1.14102e-5 0.999984 3.00404e-3 0.996675 
10 7.33183e-5 0.999784 4.38308e-6 0.999976 9.57688e-3 0.995464 
11 1.54755e-4 0.999930 2.32812e-5 0.999976 9.99734e-3 0.995764 
12 1.17251e-4 0.999697 7.73285e-6 0.999972 1.254823-2 0.995194 
13 1.53007e-4 0.999793 1.27526e-5 0.999982 2.27819e-2 0.986049 
14 1.04919e-3 0.998664 2.31026e-5 0.999977 4.48133e-4 0.998582 
15 5.761154e-4 0.998698 1.36876e-5 0.999979 6.83172e-3 0.988135 

 
Table 4.10. Results in the study of FFNN models for predictive analysis 

of input variables x2 and x3 and different training algorithms 
Input variables x2 и x3 

Hidden 
neurons 

Levenberg-Marquardt Bayesian Regularization Scaled Conjugate Gradient 
MSE при 
тестване 

R при 
тестване 

MSE при 
тестване 

R при 
тестване 

MSE при 
тестване 

R при 
тестване 



 42 

5 5.73373e-5 0.999882 1.19938e-5 0.999987 6.09723e-3 0.993193 
6 1.44124e-4 0.999923 1.65318e-5 0.999974 7.84788e-2 0.862890 
7 1.67926e-5 0.999973 1.99778-e-5 0.999971 9.70160e-3 0.998716 
8 1.75572e-5 0.999964 2.68760e-5 0.999966 4.46214e-4 0.999649 
9 5.71159e-5 0.999927 1.45921e-5 0.999981 4.12709e-3 0.994168 
10 1.32510e-4 0.999911 1.39287e-5 0.999967 1.06766e-3 0.999101 
11 1.12462e-4 0.999871 1.45404e-5 0.999976 3.63054e-3 0.996383 
12 6.16591e-5 0.999860 8.52469e-6 0.999976 5.19627e-3 0.993164 
13 2.86715e-5 0.999954 1.17933e-5 0.999979 7.51613e-3 0.994223 
14 2.63716e-4 0.999828 1.43185e-5 0.999985 3.04749e-3 0.994463 
15 8.37373e-4 0.999076 2.66765e-5 0.999978 1.81558e-3 0.997741 

 
According to the presented results for factor combinations: 
v “x1 and x2” the lowest values were obtained MSE = 1.184425e-4, MSE = 7.87707e-6 

and MSE = 2.00065e-4, respectively for 12, 8 and 5 hidden neurons in LM, BR and SCG 
training algorithms;  

v “x1 and x3” minimal RMS errors were recorded in LM “1.62596e-5”, BR “4.38308e-6” 
and SCG “4.48133e-4” in structures with 6, 10 and 14 intermediate neurons; 

v “x2 and x3” the lowest error rates were reported, respectively "1.67926e-5" for 7 hidden 
neurons for LM algorithm, "8.52469e-6" for architecture with 12 intermediate units for 
BR training and "4.46214e-4" in connection with FFNN model in 8 intermediate neurons 
and using the SCG approach; 

v “x1, x2 and x3” minimal indications were found MSE = 1.92693e-5, MSE = 8.88908e-6 
and MSE = 1.67612e-4, respectively in 6, 13 and 9 structural hidden neurons with 
sequential application of LM, BR and SCG algorithms. 

 
Таблица 4.11. Резултати при изследване на FFNN модели за прогнозен анализ 

при входни променливи x1,x2 и x3 различни алгоритми за обучение 
Input variables x1, x2 and x3 

Hidden 
neurons 

Levenberg-Marquardt Bayesian Regularization Scaled Conjugate Gradient 
MSE in 
testing 

R  
in testing 

MSE in 
testing 

R  
in testing 

MSE in 
testing 

R  
in testing 

5 4.45379e-5 0.999953 1.84230e-5 0.999949 4.25524e-4 0.999586 
6 1.92693e-5 0.999974 3.52834e-5 0.999977 2.09231e-3 0.998037 
7 2.03792e-4 0.999765 2.75634e-5 0.999975 1.79957e-3 0.997545 
8 5.36125e-5 0.999932 1.19765e-5 0.999982 4.03832e-3 0.999654 
9 2.52754e-5 0.999972 2.78891e-5 0.999986 1.67612e-4 0.999211 
10 2.96257e-5 0.999971 2.05384e-5 0.999990 1.19369e-3 0.998780 
11 2.17546e-5 0.999946 2.27914e-5 0.999955 3.40757e-3 0.991529 
12 5.18882e-5 0.999932 1.43303e-5 0.999972 1.46945e-2 0.990674 
13 3.82764e-5 0.999971 8.88908e-6 0.999975 7.13208e-3 0.990926 
14 9.36914e-5 0.999794 3.22447e-5 0.999974 1.94604e-2 0.976522 
15 4.31546e-5 0.999974 2.24857e-5 0.999975 5.76271e-3 0.975872 

 
Given the registered "..e-2" and "..e-3" orders of magnitude of the root mean square errors, 

the Scaled Conjugate Gradient approach used can be defined as the least effective. Comparing the 
presented results, the highest degree of adequacy to the task of predictive analysis was reported in 
Bayesian Regularization training for the considered cases of input impacts. 
 

 
a) 
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b) 

 
c) 

 
d) 

Fig. 4.20. Synthesized feed-forward neural models for predictive analysis of traffic load based on 
BR training in а) x1 and x2, b) x1 and x3, c) x2 and x3 и d) x1, x2 and x3 

 
With regard to this fig. 4.20 shows the final synthesized FFNN models for 8, 10, 12 and 13 

neurons in the intermediate layers for the specified algorithm. Almost the same correlation levels 
achieved from the test neural processes are as follows R = 0.999978 for input combination “x1 and 
x2”, R = 0.999976 for controllable factors “x1 and x3” and “x2 and x3” and R = 0.999975 for model 
with three input variables. The registered MSEs in the minimum range of "..e-6" give grounds to 
define FFNNs as a regression modeling tool with confirmed better efficiency compared to the 
GRNNs apparatus. 

 
4.7. CFNN architectures for predictive analysis of served user requests on server 

stations in the M/M/c/k chain for different input variables LM training. 
4.7.1. Training and selection of CFNN architectures for predictive analysis of the 

processed traffic from server stations in the M/M/c/k chain. 
The last stage of the research concerns the application of a variant of FFNN architectures in 

which there is a structural connection between the input and output layer or the so-called Cascade-
forward Neural Networks to approximate the response of the object y1. With respect to the initial 
linear layer, the addition of a functional bond is reflected in the inclusion of a second weight matrix. 
In connection with CFNN training, the Levenberg-Marquardt algorithm was again used in test 
models containing 5 to 15 latent neurons with tangential-sigmoidal activation. This type of neural 
network, like FFNNs, has the ability to add new intermediate layers depending on the specific 
purpose. 

 
Table 4.12. Results in the study of CFNN architectures for predictive analysis  

of different combinations of input variables and LM training 
Hidden 
neurons 

MSE at  
х1 and х2 

MSE at  
х1 and х3 

MSE at  
х2 and х3 

MSE at  
х1, х2 and х3 

5 2.8061e-05 1.3164e-05 4.8955e-05 1.0164e-05 
6 1.1751e-05 1.1977e-05 7.6726e-06 1.6125e-05 
7 2.0405e-05 9.4212e-06 2.0250e-05 2.2224e-05 
8 9.8043e-06 1.3144e-05 1.2254e-05 1.0584e-05 
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9 1.8516e-05 1.4764e-05 1.0857e-05 6.1230e-05 
10 1.7005e-05 2.9226e-05 1.9434e-05 1.0617e-05 
11 8.1190e-06 1.2741e-05 1.5408e-05 3.4340e-05 
12 8.3677e-06 1.4098e-05 1.9071e-05 2.1702e-05 
13 2.6177e-05 2.9015e-05 3.4903e-05 9.2107e-06 
14 1.0827e-05 9.8218e-06 2.0853e-05 2.2893e-05 
15 1.0253e-05 1.8246e-05 3.7645e-05 1.3529e-05 

 
Table 4.12 summarizes the root mean square error data for CFNNs in pairs and a set of three 

controllable factors. A common feature of the test models is the registered changes of MSE of the 
order "e-05". 

 
а) 

 
b) 

 
c) 

 
d) 

Fig. 4.27. Selected cascade-forward neural architectures for predictive analysis  
of users served at а) x1 and x2, b) x1 and x3, c) x2 and x3 and d) x1, x2 and x3 

 
For each analyzed combination of input variables - “x1 and x2”, “x1 and x3”, “x2 and x3” and 

“x1, x2 and x3”, CFNN architecture was selected with the most acceptable levels according to the 
requirements for minimizing the MSE criterion , respectively MSE = 8.1190e-06, MSE = 9.4212e-
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06, MSE = 7.6726e-06 and MSE = 9.2107e-06. The error values were reported for models with 11, 
7, 6 and 13 intermediate neurons shown in fig. 4.27. 

 
Conclusions to the fourth chapter 

 
v An approach for regression modeling and diagnostics of analytical and software objects for 

forecast analysis of the traffic load of service stations in simulated information and 
communication channels for connection and data transfer based on regression analysis, 
Generalized Regression, Feed-Forward and Cascade-Forward types of Artificial 
Intelligence; 

v Insufficient degree of adequacy of regression architectures for multivariate choice of 
solutions based on Decision tree method for forecast analysis of traffic was found due to the 
established need to increase the amount of manageable factors; 

v Polynomial mathematical regression models for forecasting the variations of the potential 
quantity of served traffic and the times for processing user requests in simulation 
information-communication systems for data transmission are derived; 

v Generalized Regression Neural Networks architectures have been synthesized for predictive 
traffic load analysis in solving a functional approximation problem for different 
combinations of two controllable factors and a set of three factors; 

v Feed-Forward Neural Models have been selected for predictive analysis of the range of 
system users served based on training and network selection using Levenberg-Marquartd, 
Bayesian Regularization and Scaled Conjugate Gradient algorithms; 

v Cascade-Forward neural architectures have been developed for predictive traffic analysis in 
simulated information and communication channels using the Levenberg-Marquartd training 
algorithm; 

v Verification of the synthesized models based on artificial intelligence has been made, 
confirming their effectiveness in simulation and potentially successful applicability in real 
environment conditions in the processing and analysis of real information traffic. 

 
III. CONCLUSION 

 
The dissertation proposes a concept for testing and measuring the impact of applied forces 

on metal parts and objects based on strain gauges. Attention is paid to basic aspects concerning the 
procedural provision of technical possibilities for:  

v type identification and prediction of the amplitude levels of simulated potential 
interferences in communication channels when transmitting measurement and specific 
information in communication channels for communication in a simulation 
environment;  

v qualitative analysis with regard to the combinations of working transducers used in the 
monitoring of loads on test parts, as well as forecasting of the quantitative 
measurements of the applied forces of influence;  

v estimated analysis of the potential amount of processed user requests regarding 
transmitted measuring sensor information in simulated traffic transmission 
environment in connection with the planning of the capacity of served system traffic.  

With regard to the realized series of researches, the following directions can be identified, 
upgrading the functionality of the presented system solutions and defining the following stages of 
development of the affected issues in the dissertation:  

v introduction of new sensor types for monitoring and registration of the applied load 
forces on tested metal objects;  

v expanding the range of analyzed mechanical quantities, which are obtained as a result 
of applied sets of forces on the tested parts;  
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v selection of methods in software design, evaluation of the characteristics and overall 
efficiency of IIR and FIR units for digital filtering of measuring electrical signals from 
functional converters;  

v integration of machine learning methods and algorithms in the course of synthesis and 
evaluation of models for identification and forecast analysis on various parametric 
indicators; 

v design and implementation of wireless transmission environment based on modern 
communication standards in the field of wireless communications for transmission of 
sensor information. 

 
IV. CONTRIBUTIONS OF THE DISSERTATION 

 
Scientific-applied contributions: 

v A methodology for identification of interference effects, analysis of strain gauge 
measurement data "and forecasting the capacity of the served traffic when applying forces 
on metals with compensation of the influence of noise and optimization of processed user 
requests was developed; 

v Structures of artificial neural networks with inverse error propagation based on 
Levenberg-Marquardt and Scaled Conjugate Gradient algorithms with different activation 
functions with accepted quality indicators for identification of Gaussian constant noise 
and Periodic constant noise, as well as digital signals with the presence of the indicated 
impacts, in communication channels; 

v Neural models have been created for the right propagation of signals and back 
propagation of the error in various training algorithms for quantitative identification of 
applied working strain gauge transducers in monitoring and registration of forces on 
metals; 

v Neural structures with backpropagation of the error and generalized regression neural 
networks for forecasting the potential applied force loads on test metal samples in 
mechanical test procedures are derived; 

v Artificial intelligence models have been synthesized for predictive analysis of the served 
traffic in simulated information and communication units with the help of Generalized 
Regression Neural Networks, Feed-Forward Neural Networks and Cascade-forward 
Neural Networks at LM, SCG and BR training algorithms with confirmed advantages 
over classical regression analysis. 

 
Applied contributions: 

v A conceptual system has been proposed for studying the characteristics of strain gauge 
sensor elements in measuring forces on metals with introduced modules for digital 
filtration in connection with noise reduction and descriptive analysis of the processed 
data; 

v Linear regression models are derived when switching on one and two working strain 
gauge transducers for predictive analysis of the change of applied force loads when testing 
metal samples; 

v Analytical polynomial models based on regression analysis for forecasting the potential 
served traffic with packet measuring and specified data with consideration and assessment 
of the influence of controllable factors in simulated telecommunication systems are 
obtained. 

 
 
 
 
 



 47 

 
V. LIST OF PUBLICATIONS ON THE DISSERTATION 

 
 

1. Kogias P., Angelov K., Daskalaki D., Sadinov S., Malamatoudis M., “Performance 
Analysis of High-Speed Single Channel Transmission in Optical Communication Line”. 
Journal of Engineering Science and Technology Review (JESTR), Special Issue on 
Conference in Telecommunications, Informatics, Energy and Management, Kavala Institute 
of Technology, pp. 94-97, ISSN: 1791-9320, E-ISSN:1791-2377, 2019. (Scopus, SJR 0.190, 
Q3). 

2. Malamatoudis M., Kogias P., Daskalaki D., Sadinov S., “Communication System for Strain 
Analysis Over Metals on the Base of Tensoresistor Transducers”. Advances in Intelligent 
Systems and Computing, 1226 AISC, pp. 321-328, 2020. ISSN: 2194-5357, (Scopus, SJR 
0.184, Q4). 

3. Daskalaki D., “Recognition of Noise in Communication Channels by Means of Artificial 
Neural Networks”. International Scientific Conference Unitech 2020 November 20-21, 
Gabrovo, p. I-229 – I-235, ISSN: 2603-378Х, 2020. 

4. Balabanova I., Sadinov S., Daskalaki D., Georgiev G., “Prediction of forces on metal 
objects by applying artificial intelligence”. 5th National Scientific Conference with 
International Participation TechCo’21, 2-3 July, Lovech, ISSN:2535-079Х, 66-70 p., 2021.  

5. Balabanova I., Sadinov S., Daskalaki D., Georgiev G., „Forecasting of communication 
traffic load by means of artificial neural networks“. International Scientific Conference 
United, 19-20 November, Gabrovo, Bulgaria, volume. 1, p. I-183-188, ISSN: 2603-378Х, 
2021.  

6.  Balabanova I., Sadinov S., Daskalaki D., Georgiev G., „Synthesis of Classification and 
Predictive FFNN Models on the Basis of Tenzoresistive Transducer Data“. AIP Publishing 
(Scopus), International Scientific Conference on Communications, Information, Electronic 
and Energy Systems – CIEES, 25 – 27 November, Ruse, pp. 1-7, 2021. In print! (IEEE 
Xplore, Scopus). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 48 

ABSTRACT 
 

The dissertation deals with aspects related to the measurement of forces when testing the 

loads of parts, structures, modules and complete equipment, which are made of metal in various 

fields of business and industry. The concept of artificial intelligence in approaches for qualitative 

and quantitative analysis of acquired measurement data from the inclusion of strain gages functional 

converters in classical bridge circuits for monitoring and control of power loads has been 

introduced. One of the most important aspects in modern communications is related to the 

identification and assessment of superimposed unwanted random noises in the communication 

channels for communication in the transmission of specialized data again on the basis of artificial 

neural networks. An essential aspect, which is also the subject of analysis in the dissertation with 

integration of artificial intelligence, concerns the ability to predict the quantitative measurability of 

the volume of packet data served. This will ensure quality control and optimization of the served 

traffic regarding the normal functioning of a specific information and communication measuring 

system for monitoring of power impacts, without deviations in the processes of customer service. 

 


